Solid-Liquid Equilibrium for Quaternary System Na₂SO₄-NaCl-H₂O₂-H₂O at 283.15 K

Hong-Kun Zhao, Rong-Rong Li, Dao-Sen Zhang, Qiu-Hong Zhang, and Cao Tang

(Submitted August 13, 2007)

The solid-liquid phase equilibrium for the quaternary system Na₂SO₄-NaCl-H₂O₂-H₂O was studied at 283.15 K by Schreinemaker's wet residues method. The solubility data for the quaternary system were measured, and the phase diagram was constructed. When the concentration of hydrogen peroxide employed in the experiments was below 50 mass%, four solid phases were present in the quaternary system, which corresponded to NaCl, Na₂SO₄·10H₂O, Na₂SO₄·0.5-H₂O₂·H₂O, and 4Na₂SO₄·2H₂O₂·NaCl. The phase diagram of the quaternary system included two invariant points and four crystalline zones. The crystalline region of 4Na₂SO₄·2H₂O₂·NaCl was larger than those of NaCl, Na₂SO₄·10H₂O, or Na₂SO₄·0.5H₂O₂·H₂O.

Keywords	hydrogen peroxide, phase diagram, phase equilibrium,
	sodium chloride, sodium sulfate

1. Introduction

 $4Na_2SO_4$: $2H_2O_2$:NaCl is a compound obtained in aqueous solution by reaction of Na_2SO_4 , NaCl, and H_2O_2 . The crystalline compound has good properties as a whitener, it dissolves quickly, and its solubility in cold water is high. In addition, it can be prepared from nontoxic salts that are abundant, inexpensive, and used regularly in washing powder formulations. Adams and Pritchard^[1,2] studied its clathrate structure and confirmed that the $4Na_2SO_4$: $2H_2O_2$:NaCl with the cage structure was more stable than sodium percarbonate and sodium perborate. Subsequently, the preparation methods and applications have been reported in the literature.^[3-9] Recently, Cosgrove and William studied its thermal decomposition behavior.^[10] Forner and coworkers^[11] discussed the industrial process for obtaining the stable compound $4Na_2SO_4$: $2H_2O_2$:NaCl.

It is well known that solid-liquid phase equilibrium data are important in crystallization processes. The preparation process of the $4Na_2SO_4\cdot 2H_2O_2\cdot NaCl$ is based on the phase diagram of the quaternary system $Na_2SO_4-NaCl-H_2O_2-H_2O$. The solid-liquid phase equilibrium data are very important in the design of equipment for separation processes in the chemical industry. However no solubility data for the quaternary system can be found in the literature.^[12] In order to obtain a higher yield of the compound $4Na_2SO_4\cdot 2H_2O_2\cdot$ -NaCl, the reaction is usually performed at relative low temperature. In this work, we studied the solid-liquid equilibrium of the quaternary system $Na_2SO_4-NaCl-H_2O_2-H_2O$ at

Hong-Kun Zhao, Rong-Rong Li, Dao-Sen Zhang, Qiu-Hong Zhang, and Cao Tang, College of Chemistry & Chemical Engineering, YangZhou University, Yangzhou, Jiangsu 225002, People's Republic of China. Contact e-mail: hkzhao@zzu.edu.cn.

283.15 K. The objective of this research was to generate and analyze the phase diagram of quaternary system using the Schreinemakers wet residue method,^[13] based on the following: The tie line joining the composition of the pure solid and of the saturated liquid in equilibrium with it is the locus of all intermediate compositions corresponding to varying amounts of solid and liquid phase. This includes the composition of the liquid phase and of crystals wet with mother liquor. A straight line drawn through a pair of points representing such compositions on a phase diagram is a segment of the tie line and therefore passes through the composition of the pure solid. The lines drawn through several such pairs of composition, each corresponding to a different original mixture, have a common intersection at the composition of the pure solid phase.

2. Materials and Experimental

2.1 Materials

The chemicals used are of analytical grade. The hydrogen peroxide ($\leq 50 \text{ mass}\%$) is purchased from the Puyang chemical plant and does not contain stabilizers. The other chemicals are provided by the Beijing Chemical Plant and used without further purification: sodium sulfate ($\geq 99.9 \text{ mass}\%$), sodium chloride ($\geq 99.9 \text{ mass}\%$). The water used to prepare solutions is twice-distilled water (conductivity $< 5 \ \mu$ S/cm).

2.2 Procedure

A thermostat was used in this experiment, with a device for rotating several bottles at a time. The isothermal dissolution method was used during experiments. Excess sodium sulfate and/or sodium chloride was dissolved in 25 mL of aqueous hydrogen peroxide with various concentrations (0-50 mass%). The saturated solution was transferred to a conical flask. The conical flask was stoppered and placed in a thermostat at (283.15 \pm 0.01 K). To ensure

	Mass f of li phas	raction quid e, %	Mass f of moi phas	raction st solid e, %				
No.	NaCl	H_2O_2	NaCl	H_2O_2	phase, g/mL	Solid phase		
1	20.74	34.25	93.73	2.99	1.3119	NaCl		
2	20.67	32.27	93.69	2.93	1.2927	NaCl		
3	20.67	28.16	92.82	2.74	1.274	NaCl		
4	21.66	22.45	93.46	2.48	1.2665	NaCl		
5	21.66	18.8	93.19	2.37	1.2531	NaCl		
6	22.63	15.65	93.22	2.41	1.2387	NaCl		
7	23.94	11.04	93.13	2.33	1.2384	NaCl		
8	25.39	6.86	92.89	2.29	1.2189	NaCl		
9	26.29 0		93.09 2.16		1.2017	NaCl		

Table 2Mass fraction solubilities of the systemsodium sulfate-hydrogen peroxide, water at 283.15 K

	Mass of I pha	fraction liquid 1se, %	Mass of mo pha	fraction bist solid ise, %	Density of			
No.	H_2O_2	Na ₂ SO ₄	H_2O_2	Na ₂ SO ₄	g/mL	Solid phase		
1	36.16	23.91	11.97	73.71	1.4095	$Na_2SO_4 \cdot 0.5H_2O_2 \cdot H_2O$		
2	33.23	24.47	11.6	74.01	1.3845	$Na_2SO_4{\cdot}0.5H_2O_2{\cdot}H_2O$		
3	30.75	24.98	11.23	73.78	1.3741	$Na_2SO_4{\cdot}0.5H_2O_2{\cdot}H_2O$		
4	25.98	26.25	10.66	75.23	1.3728	$Na_2SO_4{\cdot}0.5H_2O_2{\cdot}H_2O$		
5	22.65	27.12	11.13	74.09	1.3455	$Na_2SO_4{\cdot}0.5H_2O_2{\cdot}H_2O$		
6	20.17	27.85	7.95	62.23	1.3326	$Na_2SO_4{\cdot}0.5H_2O_2{\cdot}H_2O$		
7	19.74	27.49	4.77	53.04	1.3492	$+ Na_2SO_4 \cdot 10H_2O$ $Na_2SO_4 \cdot 0.5H_2O_2 \cdot H_2O$		
						$+ Na_2SO_4 \cdot 10H_2O$		
8	18.81	24.24	2.9	40.8	1.2896	Na ₂ SO ₄ ·10H ₂ O		
9	16.5	21.44	2.82	41.13	1.2525	Na ₂ SO ₄ ·10H ₂ O		
10	13.9	18.23	2.77	41.09	1.2201	Na ₂ SO ₄ ·10H ₂ O		
11	9.93	14.29	2.43	41.11	1.1612	Na ₂ SO ₄ ·10H ₂ O		
12	7.12	12.72	2.34	40.5	1.1543	Na2SO4·10H2O		
13	4.35	10.68	2.38	40.19	1.1115	Na ₂ SO ₄ ·10H ₂ O		
14	0	8.35	0	40.23	1.0628	Na ₂ SO ₄ ·10H ₂ O		

that sampling was performed under equilibrium conditions, a preliminary test was carried out in which the liquid concentration and the density were measured as a function of time. Two types of experiment were carried out, one starting from a supersaturated solution, in which the solid phase precipitated to reach equilibrium and the other, starting from a nonsaturated solution, in which solid dissolved to reach equilibrium. The results showed that for both cases about 4 h was sufficient to reach equilibrium. In our experiments, sampling was performed after a minimum of 5 h. The composition of the solid phase was determined by Schreinemaker's method.^[13] After the equilibrium was achieved, the solid phase and the liquid phase were separated by filtration at 283.15 K and then analyzed, respectively.

Table 3	Mass	fraction	solubilit	ies of	the	system	
sodium	sulfate-	sodium	chloride,	water	at	283.15	K

No.	Mass of pha	fraction liquid 1se, %	Mass of mo pha	fraction bist solid bise, %	Dansita of Kard			
	NaCl	Na ₂ SO ₄	NaCl	Na ₂ SO ₄	phase, g/mL	Solid phase		
1	24.74	0	91.42	0.12	1.1803	NaCl		
2	24.36	1.51	91.28	0.19	1.1997	NaCl		
3	23.99	2.63	90.09	0.2	1.2176	NaCl		
4	23.23	3.76	90.87	0.17	1.2245	NaCl		
5	22.89	3.75	58.31	14.62	1.2289	$NaCl + Na_2SO_4$ $10H_2O$		
6	20.6	3.36	32.64	2.06	1.2201	Na ₂ SO ₄ ·10H ₂ O		
7	18.72	3.01	33.15	1.73	1.2043	Na ₂ SO ₄ ·10H ₂ O		
8	14.51	3.39	34.84	1.98	1.1677	Na ₂ SO ₄ ·10H ₂ O		
9	11.19	3.65	34.96	1.44	1.1448	Na ₂ SO ₄ ·10H ₂ O		
10	7.03	4.8	37.79	1.36	1.125	Na ₂ SO ₄ ·10H ₂ O		
11	2.94	6.77	38.13	1.05	1.1031	Na ₂ SO ₄ ·10H ₂ O		
12	0	8.28	39.62	0	1.0813	$Na_2SO_4{\cdot}10H_2O$		

2.3 Analysis

The hydrogen peroxide concentration was determined by titrating the acidified solution with standard potassium permanganate. The sodium chloride concentration was titrated with a standard solution of silver nitrate in the presence of three drops of 0.1% (w/v) potassium chromate as an indicator. The sodium sulfate concentration was determined by titrating with a standard solution of barium chloride in the presence of sodium alizarinsulfonate as an indicator.^[14] The densities (ρ) of equilibrium liquid phase were measured with a specific weighting bottle calibrated by the floating force of air with a precision of ± 0.2 mg. The solute and the solvent were prepared using an electronic balance that had a range of measurement up to 120 g, with an uncertainty of ± 0.0001 g. Each analysis was repeated three times, and the average value of three measurements was considered as the final value of the analysis (precision 0.01%).

3. Results and Discussion

The solubility of the ternary systems NaCl-H₂O₂-H₂O, Na₂SO₄-H₂O₂-H₂O, Na₂SO₄NaCl-H₂O at 283.15 K cannot be found in the literature.^[12] In this work, the solubility data for the three ternary systems are determined experimentally. The measured solubility of the ternary systems and the quaternary system Na₂SO₄-NaCl-H₂O₂-H₂O at 283.15 K are shown in Tables 1, 2, 3, 4, respectively. The phase diagrams of these systems at 283.15 K are plotted in Fig. 1 to 5.

3.1 Ternary System

Figures 1 to 3 are phase diagrams of the ternary systems, NaCl-H₂O₂-H₂O, Na₂SO₄-H₂O₂-H₂O, and Na₂SO₄-NaCl-H₂O at 283.15 K, respectively. It can be seen from Fig. 1 that NaCl-H₂O₂-H₂O is a simple ternary system. The

Table 4	Mass fraction	solubilities	of the	quaternary	system	sodium	sulfate-sodium	chloride-hydrogen	peroxide,
water at	283.15 K								

	Mass fraction, %						Jãneck index, kg/100 kg dry-salt											
	Liquid phase Moist solid pha				id phas	e	1	Liquid	phase		Mo	ist soli	d phas	se	D 1/ 611 11			
No.	Na ₂ SO ₄	NaCl	H_2O_2	H_2O	Na ₂ SO ₄	NaCl	H_2O_2	H ₂ O	Na ₂ SO ₄	NaCl	H_2O_2	H ₂ O	Na ₂ SO ₄	NaCl	H_2O_2	H ₂ O	phase, g/mL	Solid phase
1	1.59	19.29	36.29	42.83	36.08	36.29	15.15	12.48	2.78	33.74	63.48	74.92	41.22	41.46	17.31	14.26	1.3179	B + A
2	1.47	19.89	30.98	46.99	40.75	39.58	7.89	11.78	4.05	37.52	58.43	88.63	46.19	44.87	8.94	13.36	1.3003	
3	2.1	20.84	26.72	50.34	31.63	48.28	6.09	14	4.22	41.97	53.81	101.42	36.78	56.14	7.08	16.27	1.2849	
4	3.87	21.21	21.61	53.31	40.18	49.33	6.59	3.9	8.29	45.43	46.28	114.18	41.81	51.33	6.86	4.06	1.2725	
5	3.02	21.74	17.72	57.52	17.74	71.27	4.33	6.66	7.11	51.18	41.71	135.4	19.01	76.36	4.64	7.14	1.2566	
6	2.98	23.57	14.48	58.97	31.58	48.22	6.13	14.07	7.26	57.44	35.3	143.74	36.75	56.12	7.13	16.37	1.2504	
7	3.04	24.85	12.36	59.75	58.1	26.03	8.35	7.52	7.55	61.74	30.77	148.45	62.82	28.15	9.03	8.13	1.2448	
8	3.8	24.19	7.84	64.17	38.83	44.1	8.13	8.94	10.6	67.51	21.89	179.11	42.64	48.43	8.93	9.82	1.2343	
9	4.78	23.16	4.88	67.18	67.87	23.09	7.1	1.94	14.56	70.57	14.87	204.69	69.21	23.55	7.24	1.98	1.2241	
10	5.59	22.98	3.77	67.66	69.97	19.42	7.18	3.44	17.29	71.06	11.66	209.21	72.46	20.11	7.44	3.55	1.2284	
11	4.09	24.53	0.62	70.76	27.42	33.64	0.073	38.87	13.99	83.89	2.12	242	44.85	55.03	0.12	63.58	1.2064	N ₁₀ + Aeee
12	5.03	24.2	1.04	69.73	23.85	42.6	0.18	33.37	16.62	79.92	3.46	230.31	35.79	63.94	0.27	50.08	1.2093	
13	5.05	24.28	1.82	68.85	22.38	43.58	0.21	33.83	16.21	77.95	5.84	221.03	33.82	65.87	0.31	51.13	1.2131	
14	7.27	24.36	2.16	66.21	32.38	22.68	0.52	44.42	21.52	72.09	6.39	211.43	58.25	40.81	0.94	79.92	1.212	
15	5.65	23.63	3.62	67.1	26.01	28.99	1.21	43.79	17.17	71.82	11	203.95	46.27	51.57	2.15	77.9	1.2163	
16	5.21	23.36	4.57	66.76	42.04	17.45	1.88	36.82	15.97	70.28	13.75	200.84	68.5	28.43	3.06	62.95	1.2193	
17	5.08	22.55	4.72	67.65	63.41	6.79	5.39	24.51	15.7	69.71	14.59	209.12	83.89	8.98	7.13	32.29	1.2283	$N_{10} + B$
18	6.4	21.59	5.87	66.14	57.36	7.04	5.17	30.43	18.9	63.76	17.34	195.33	82.45	10.12	7.43	43.74	1.2232	
19	6.65	20.38	7.21	65.76	50.94	4.38	3.13	41.55	19.42	59.52	21.06	192.06	87.15	7.49	5.36	71.09	1.2125	
20	6.93	17.23	8.24	67.6	57.04	5.52	5.09	32.35	21.39	53.18	25.43	208.64	84.32	8.16	7.52	47.82	1.2339	
21	8.54	16.58	9.89	64.99	54.82	4.46	4.57	36.14	24.39	47.36	28.25	185.63	85.86	6.99	7.16	56.62	1.2239	
22	10.44	16.12	11.54	61.9	50.45	4.32	4.21	41.02	27.4	42.31	30.29	162.47	85.54	7.32	7.14	69.55	1.2304	
23	11.35	12.25	13.11	63.29	47.08	3.53	4.17	45.22	30.92	33.37	35.71	172.41	85.94	6.44	7.61	82.55	1.2368	
24	11.95	12.07	13.09	62.89	52.4	5.54	4.98	37.08	32.2	32.52	35.27	169.47	83.28	8.81	7.91	58.93	1.2442	
25	14.16	11.13	14.01	60.7	52.06	3.93	4.51	39.5	36.03	28.32	35.65	154.45	86.05	6.5	7.45	65.29	1.2448	
26	14.5	9.47	15.36	60.67	58.12	4.19	5.36	32.34	36.87	24.08	39.05	154.28	85.89	6.19	7.92	47.78	1.2456	
27	15.16	8.85	15.94	60.05	64.65	7.56	8.55	19.24	39.62	21.57	38.81	143.52	80.05	9.36	10.59	23.82	1.2565	
28	14.29	7.41	16.3	62	60.57	5.08	6.4	27.96	37.61	19.5	42.89	163.16	84.07	7.05	8.88	38.79	1.257	
29	19.06	5.6	17.15	58.19	57.6	4.45	6.16	31.79	45.59	13.39	41.02	139.18	84.45	6.52	9.03	46.61	1.3257	
30	21.75	1.45	32.14	44.66	82.88	0.54	13.66	2.92	39.3	2.62	58.08	80.7	85.37	0.56	14.07	3.01	1.3542	B + C
31	21.95	1.85	30.64	45.56	75.36	3.86	11.25	9.53	40.32	3.4	56.28	83.69	83.3	4.27	12.44	10.53	1.3473	
32	22.76	2.31	26.24	48.69	76.81	4.14	10.93	8.12	44.36	4.5	51.14	94.89	83.6	4.51	11.9	8.84	1.3266	
33	20.56	1.37	34.76	43.31	75.72	2.27	13.41	8.6	36.27	2.41	61.32	76.43	82.85	2.48	14.67	9.42	1.3118	
34	23.09	3.48	23.08	50.35	71.54	2.69	11.88	13.89	46.5	7.01	46.49	101.42	83.08	3.12	13.8	16.13	1.3076	
35	20.61	4.64	17.61	57.14	59.62	4.58	6.61	29.19	48.09	10.83	41.09	133.32	84.2	6.47	9.33	41.22	1.2897	
36	20.84	3.88	18.02	57.26	60.72	5.07	7.23	26.97	48.76	9.08	42.16	133.97	83.16	6.94	9.9	36.95	1.29	
37	25.4	3.37	19.25	51.98	53.33	0.56	4.1	42.01	52.89	7.02	40.09	108.22	91.96	0.97	7.07	72.45	1.3251	$N_{10} + C$
38	26.11	1.93	19.21	52.75	55.29	3.66	6.6	34.44	55.26	4.08	40.66	111.64	84.35	5.58	10.07	52.56	1.3108	
39	25.68	1.52	18.83	53.97	70.52	7.2	10.62	11.55	55.79	3.3	40.97	117.25	79.85	8.14	12.01	13.07	1.3257	
40	25.76	1.05	19.5	53.69	54.84	0.39	7.09	37.68	55.63	2.27	42.11	115.94	88	0.63	11.38	60.46	1.3006	
А, №	VaCl; B,	4Na ₂ S0	$O_4 \cdot 2H_2$	O₂·NaC	Cl; C, Na	$_2$ SO ₄ ·0.	.5H ₂ O ₂ ·	H ₂ O; N	N_{10} , Na_2S	O ₄ ·10H	I ₂ O							

solubility of NaCl at 283.15 K varies a little with the concentration of hydrogen peroxide aqueous solution. Figure 2 is the phase diagram of the ternary system Na₂SO₄-H₂O₂-H₂O at 283.15 K. It shows that two hydrates are presented when the concentration of H_2O_2 is less than

50 mass %. The analytical results indicate that one hydrate is Na_2SO_4 ·0.5H₂O₂·H₂O, and the other is Na_2SO_4 ·10H₂O. In the ternary system Na_2SO_4 -NaCl-H₂O, there is no crystalline region of anhydrous sodium sulfate in the system at 283.15 K as shown in Fig. 3.

Fig. 1 Phase diagram for the system sodium chloride-hydrogen peroxide-water at 283.15 K. S_A , solubility of NaCl in water at 283.15 K; w, mass fraction

Fig. 2 Phase diagram for the system sodium sulfate-hydrogen peroxide-water at 283.15 K. N₁₀, Na₂SO₄·10H₂O; C, Na₂SO₄· $0.5H_2O_2$ ·H₂O; E₁, cosaturated point; S_N, solubility of Na₂SO₄· $10H_2O$ in water at 283.15 K; w, mass fraction

3.2 Quaternary System

The phase diagrams of the quaternary system Na_2SO_4 - $NaCl-H_2O_2-H_2O$ at 283.15 K are given in Fig. 4 and 5. It can be seen that when the concentration of hydrogen peroxide employed in the experiments is below 50 mass%,

Fig. 3 Phase diagram for the system sodium sulfate-sodium chloride-water at 283.15 K. N_{10} , Na_2SO_4 ·10H₂O; E₂, cosaturated point; S_N , solubility of Na_2SO_4 ·10H₂O in water at 283.15 K; S_A , solubility of NaCl in water at 283.15 K; w, mass fraction

Fig. 4 Phase diagram for the quaternary system sodium sulfatesodium chloride-hydrogen peroxide-water at 283.15 K. C, Na₂SO₄: $0.5H_2O_2$ ·H₂O; B, $4Na_2SO_4$ ·2H₂O₂·NaCl; E₃, cosaturated point of a solution with solid phases NaCl, Na₂SO₄·10H₂O, and $4Na_2SO_4$ · 2H₂O₂·NaCl; E₄, cosaturated point of a solution with solid phases Na₂SO₄·10H₂O, $4Na_2SO_4$ ·2H₂O₂·NaCl, and Na₂SO₄·0.5H₂O₂· H₂O; *B*, *C*, *S*_A, *N*₁₀, and *S*_N have the same meanings as those described in Figures 1 to 3

Fig. 5 Jãneck projection of the phase diagram for the quaternary system sodium sulfate-sodium chloride-hydrogen peroxidewater at 283.15 K. (a) Aqueous phase diagram. (b) Dry salt phase diagram. I, NaCl crystallization zone; II, Na₂SO₄·10H₂O crystallization zone; III, Na₂SO₄·0.5H₂O₂·H₂O crystallization zone; IV, 4Na₂SO₄·2H₂O₂·NaCl crystallization zone; B and C have the same meanings as those described in Fig. 4

there are four solids formed in the system, which correspond to Na₂SO₄·10H₂O, NaCl, Na₂SO₄·0.5H₂O₂·H₂O and 4Na₂ SO₄·2H₂O₂·NaCl, respectively. There are five cosaturation curves of two components: curve 1, corresponding to the coexistence of crystals Na₂SO₄·10H₂O and NaCl with the saturated solution; curve 2, corresponding to the coexistence of crystals NaCl and 4Na₂SO₄·2H₂O₂·NaCl with the saturated solution; curve 3, corresponding to the coexistence of crystals 4Na₂SO₄·2H₂O₂·NaCl and Na₂SO₄·10H₂O with the saturated solution; curve 4, corresponding to the coexistence of crystals Na₂SO₄·0.5H₂O₂·H₂O and Na₂SO₄·10H₂O with the saturated solution; curve 5, corresponding to the coexistence of crystals 4Na₂SO₄·2H₂O₂·NaCl and Na₂SO₄·10H₂O with the saturated solution; curve 5, corresponding to the coexistence of crystals 4Na₂SO₄·2H₂O₂·NaCl and Na₂SO₄· 0.5H₂O₂·H₂O with the saturated solution.

The quaternary diagram is divided into four crystallization zones by five curves: I, corresponding to the equilibrium of crystal NaCl with saturated solution; II, corresponding to the equilibrium of crystal Na₂SO₄·10H₂O with saturated solution; III, corresponding to the equilibrium of crystal $Na_2SO_4 \cdot 0.5H_2O_2 \cdot H_2O$ with saturated solution; IV, corresponding to the equilibrium of crystal $4Na_2SO_4 \cdot 2H_2O_2 \cdot NaCl$ with saturated solution. The crystalline region of $4Na_2SO_4 \cdot 2H_2O_2 \cdot NaCl$ is the largest one among the four crystallization regions. The results indicate that the compound $4Na_2SO_4 \cdot 2H_2O_2 \cdot NaCl$ can be easily prepared at 283.15 K.

As shown in Fig. 4 and 5, there are two invariant points E_3 and E_4 . E_3 corresponds to coexistence of solids NaCl, Na₂SO₄·10H₂O, and 4Na₂SO₄·2H₂O₂·NaCl, and E_4 corresponds to coexistence of solids Na₂SO₄·10H₂O, Na₂SO₄·0.5H₂O₂·H₂O, and 4Na₂SO₄·2H₂O₂·NaCl. E_3 and E_4 are invariant points at 288 K.

4. Conclusion

The phase equilibrium for the quaternary system Na₂SO₄-NaCl-H₂O₂-H₂O and its subsystems at 283.15 K was studied by Schreinemaker's wet residues method. The phase diagram was constructed based on the measured solubility. At studied temperature, four solid phases formed in the quaternary system Na₂SO₄-NaCl-H₂O₂-H₂O that corresponded to Na₂SO₄·10H₂O, NaCl, Na₂SO₄·0.5H₂O₂·H₂O, and 4Na₂SO₄· 2H₂O₂·NaCl, respectively. The phase diagram of the quaternary system included two invariant points and four crystalline zones. The crystalline region of 4Na₂SO₄·2H₂O₂·NaCl is larger than those of other three solids. The phase diagram of the system Na₂SO₄-NaCl-H₂O₂-H₂O provide the fundamental basis for the preparation and separation out of 4Na₂SO₄· 2H₂O₂·NaCl from the reaction system.

Acknowledgments

We thank the High Education Natural Science Foundation of Jiangsu Province (Grant No. HK051087) and the Open Project Program of the Key Laboratory of Physical Chemistry, Yangzhou University, China for their support. We also appreciate the editors and the anonymous reviewers for their constructive suggestions.

References

- J.M. Adams and R.G. Pritchard, The Crystal Structure of 4Na₂SO₄:2H₂O₂·NaCl, *Acta Crystallogr.*, 1978, **B34**(5), p 1428-1432, in English
- J.M. Adams, R.G. Pritchard, and J.M. Thomas, A Novel Tunnel Structure Containing Enclathrated Hydrogen Peroxide: 4Na₂SO₄:2H₂O₂:NaCl, *J. Chem. Soc., Chem. Commun.*, 1978, 3, p 288-289, in English
- 3. Y. Ito and T. Mashiko, "Stable Sodium Sulfate-Hydrogen Peroxide-Sodium Chloride Adduct and Process for Preparing Same," U.K. patent 1,480,884, July 27, 1977, in English
- 4. Y. Nakagawa, S. Sugiura, and K. Matsunaga, "Detergent Composition Containing Novel Bleaching Agent," U.S. patent 3,979,312, September 7, 1976, in English
- Y. Nakagawa, S. Sugiura, and K. Matsunaga et al., "Bleaching Composition," U.S. patent 3,979,313, September 7, 1976, in English

- Y. Ito and T. Mashiko, "Stable Sodium Sulfate-Hydrogen Peroxide-Sodium Chloride Adduct and Process for Preparing Same," U.S. patent 4,005,182, January 25, 1977, in English
- 7. W. Doetsch, H. Honig, and R. Siegel, "Hydrogen Peroxide Adduct and Process for Preparation and Use Thereof," U.S. patent 4,400,367, August 23, 1983, in English
- 8. Y. Ito, "Process for Preparing Stabilized Adduct of Sodium Sulphate-Hydrogen Peroxide-Sodium Chloride," J.P. patent 60051611, August 31, 1985, in Japanese
- 9. B.J. Forner and P.R. Artlgas, "Process for Obtaining Granules of a Stable Adduct of Sodium Sulphate and Hydrogen Peroxide Containing Sodium Chloride," E.P. patent 1,258,454, November 20, 2002, in English
- S.D. Cosgrove and J. William, Chemistry of Sulfate Chloride Perhydrates. Part 1. Thermal Decomposition of 4Na₂SO₄.

NaCl $2H_2O_2$ and the Formation of Na₂SO₄(III), J. Mater: Chem., 1998, **8**(2), p 413-417, in English

- B.J. Forner and P.R. Artlgas, "Industrial Process for Obtaining a Stable Adduct of Na₂SO₄, NaCl and H₂O₂," E.P. patent 1,258,455, November 20, 2002, in English
- 12. H. Stephen and T. Stephen, Solubility of Inorganic and Organic Compounds. Pergamon, Oxford, 1979
- H. Schott, A Mathematical Extrapolation for the Method of Wet Residues, *J. Chem. Eng. Data*, 1961, 6(3), p 324-324, in English
- 14. H.K. Zhao, C. Tang, D.S. Zhang, W.L. Xu, Y.Q. Wang, and P.M. Jian, Solubility and Phase Diagram for the Quaternary System Na₂CO₃ + Na₂SO₄ + H₂O₂ + H₂O at 293 K, *J. Chem. Eng. Data*, 2006, **51**(5), p 1567-1570, in English